Tensioned Advantage Deluxe Electrol

Designed to eliminate the extra step of finishing the screen with trim, the Advantage line of projection screens is designed with ceiling trim already in place. Once the screen is installed, the screen's trim conceals the rough opening eliminating the need to complete additional trim work.

Sliding installation brackets make it easy to attach the screen housing to the structure above the drop ceiling.

Tensioned screens ensure the smoothest surface possible, and all Deluxe screens feature a closure door that hides the open space and screen in the ceiling, providing a cleaner aesthetic.

The Tensioned Advantage ${ }^{\oplus}$ Deluxe Electrol ${ }^{\oplus}$ screen features simple in ceiling installation that can be done in two stages. The screen case can be installed during the rough-in construction stage and the fabric assembly can be completed during the finishing stage.

Features

- All sizes standard with $12^{\prime \prime}$ of black drop except for Parallax which is standard with 2"
- Standard Low Voltage Control (LVC) to keep your screen operation flexible
- Smooth Roll Technology to keep your screen perfectly flat
- Slim-Tab, a lower profile and stronger tab design to keep your screen perfectly taut
- Support includes a comprehensive five-year warranty to keep you confident in your purchase
- Tensioning Cable System to prevent warping and ensure even lateral tension
- UL Plenum rated case
- White powder-coated closure doors and case for a clean aesthetic
- Available with SCB-100 (RS-232 serial control board) or Video Projector Interface (screen trigger) built into the case
- Decora-style, three-button wall switch
- Standard black backing retains projected brightness on front projection surfaces
- Seamless surfaces in all models
- Parallax 0.8 surface for standard throw projectors (1.5:1 throw or greater)

Optional Accessories:

- Radio Frequency Wireless Remote • Locking Switch Cover Plate
- Infrared Wireless Remote

Parallax 0.8*
Horizontal Half Angle: 85° Vertical Half Angle: 170 Gain: 0.8

HD Progressive 1.1 Contrast Half Angle: 60 Gain: 1.1

HD Progressive 0.6
Half Angle: 85° Gain: 0.6

HD Progressive 1.1

Contrast Perf

Half Angle: 60° Gain: 1.1

HD Progressive 0.9
Half Angle: 85° Gain: 0.9

HD Progressive 1.3
Half Angle: 75° Gain: 1.3

HD Progressive 1.1
Half Angle: 85° Gain: 1.1

Da-Mat
Half Angle: 60° Gain: 1.0

HD Progressive 1.1 Perf Half Angle: 85° Gain: 1.1

High Contrast Da-Mat Half Angle: 45° Gain: 0.8

Rear Projection

Dual Vision
Half Angle: 65° Gain: 0.9

Da-Tex
Half Angle: 30° Gain: 1.3
*NOTE: The Advantage Deluxe Electrol featuring Parallax will look visibly different when compared to other Da-Lite tensioned screens with vinyl surfaces. This is due to the nature of the Parallax material, which is a micro-layered, high-grade plastic lens system. While it may have slight variations in appearance, it is optically flat. Meaning, that when under projection, the Advantage Deluxe Electrol featuring Parallax will perform on the same level as the Da-Lite $4 K$-ready HD Progressive surfaces.

Product images

The examples below are for a ceiling mounted projector, but can be reversed for a table-top projector.

Projector Distance

- Parallax 0.8 requires a minimum Lens Throw Ratio of 1.5:1
- How to calculate Projection Distance (x):

Projection Distance $=$ Screen Width (viewable) \times Lens Throw Ratio
Example:
180" projection distance $\div 96$ " wide screen $=1.88$ (1.88:1 Lens Throw Ratio)

- How to calculate Lens Throw Ratio

Lens Throw Ratio $=$ Projection Distance \div Screen Width (viewable)
Example:
87 " wide screen $\times 1.5$ (minimum lens throw ratio) $=130.5$ (130.5 " projection distance)

Projection Angle

- If the Projection Distance (x) is known, find the Maximum Vertical Offset:

Maximum Vertical Offset $(y)=0.4 \times$ Projection Distance (x)
Example:
Projection Distance $(x)=130.5^{\prime \prime}$
$130.5^{\prime \prime} \times 0.4=52.2^{\prime \prime}$
52.2" = Maximum Vertical Offset

- If the Vertical Offset (y) is known, find the Minimum Projection Distance:

Minimum Projection Distance $(x)=2.5 \times$ Vertical Offset (y)
Example:
87" wide screen with a 60" Vertical Offset (y)
$60^{\prime \prime} \times 2.5=150^{\prime \prime}$
$150 "=$ Minimum Projection Distance

DA-LITE

FOR YOUR IMAGE I legrandav.com
USA P866.977.3901 E info@da-lite.com

CANADA P 877.345.4329 E canadainfo@milestone.com
EMEA P +31495580840 E emea.sales@milestone.com
APAC P +852 21454099 E asia.da-lite@milestone.com

